Index Circular Stirling Stirling program source code Links
circular Gamma dual circular Alpha Siemens Alpha Gamma

Animation of the Beta type Stirling engine with Rhombic drive.
displacer
compression space displacer drive rod compression space
power piston piston drive rod power piston
power piston power piston power piston drive rod power piston drive rod power piston power piston
hot gas in heater tube or expansion space.
heater
regenerator
cylinder wall
displacer
connecting duct
cold gas in cooler tube or compression space
cooling water
power piston
displacer drive rod
Degree of cycle (of cylinder 1).
degree of cycle
0 30 60 90 120 150 180 210 240 270 300 330 360
Animation speed (cycles/minute.) Stops after 3 minutes.
animation speed
0 5 10 15 20 25 30 35 40 45 50 55 60


Info to calculate movements. -----------
 1. cm, crank radius of the displacer crank.
 2. cm, length of the displacer connecting rod.
 3. cm, displacer crankshaft excentricity.

Unless you want to make some exotic kind of drive you better leave the next four entries zero. In that case for the crank radius, the length of the conecting rods and the crankshaft excentricity for the displacer will be used for the power piston. In a normal Rhombic drive the crank angle between the displacer crank and the power piston crank is zero.
 4. cm, crank radius of the power piston cranks.
 5. cm, length of the power piston connecting rods.
 6. cm, power piston crankshaft excentricity.
 7. degree, crank angle between the displacer crank and the power piston crank.

Info to calculate active volumes and volume changes. -----------
 8. cm, diameter expansion cylinder.
 9. cm, diameter of the displacer drive rod.
10. cm, diameter power piston cylinder (zero means the power piston is in the same cylinder as the displacer.).
11. cm, minimal distance between displacer and power piston (compression space clearance).

Info to calculate dead volumes. -----------
12. cm, displacer end clearance at top (expansion space clearance).
13. cm, gap in hot cap.
14. cm, length of hot cap.


CALCULATED OUTPUTS.

%
100-
90-
80-
70-
60-
50-
40-
30-
20-
10-
0-
Live Volumes, red= hot, green= total, blue= cold
( % of maximum total live volume)
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c
0 30 60 90 120 150 180 210 240 270 300 330 360
Angle degree

HOT CYLINDER VOLUMES
= hot cylinder end clearance dead volume, cm^3.
= gap in hot cap dead volume (with regenerator function), cm^3.
= hot active volume (= hot live volume = swept expansion volume), cm^3.
+ -------------
= total maximum hot cylinder volume, cm^3.

COLD CYLINDER VOLUMES
= between piston and displacer end clearance cold dead volume, cm^3.
= cold cylinder active volume, cm^3.
+ -----------
= total maximum cold cylinder volume, cm^3.

EXTRA
= displacer (hot piston) area, cm^2.
= power piston (cold piston) area, cm^2.
= overlap volume (volume of the space where the path of both pistons overlap in cold space), cm^3.
= overlap length (length where the path of both pistons overlap in cold space), cm.
= total maximum volume in cylinders, cm^3.
= minimum live volume, cm^3.
= maximum live volume, cm^3.
'Rhombic drive 
'                  ____________________
'                 |                    | 
'                 |        (hot)       |
'                 |   Expansion Space  |
'                 | __________________ |
'                 ||                  ||
'                 ||     DISPLACER    ||
'                 ||__________________||
'                 |          |         |
'Compression Space|          |         | (cold)
'                 |          |         |
'    Power Piston | ======== | ======= |
'                 |         |||        |
'                           |||
'                <----->    |||    <------>     
'                  EX3  ----|||----   EX3      
' _|_ =crankshaft      /     |     \    
'  |              CR3 /      |      \ CR3 
'                RC3 /       |       \ RC3
'              _|___/        |        \___|_
'               |RC1\        |        /RC1|
'R=crank             \       |       /  
'                 CR1 \      |      / CR1   
'CR1=CR3=bar           \     |     /   
'                       -----------              
'                <----->           <----->
'                  EX1               EX1
'                        CROSS BAR
'
HPA= hot piston area
HD=  hot cylinder dead volume
CPA= cold piston area
CD=  cold cylinder dead volume
OVERLAP= overlap volume in cold space
RA=2*pie/360
AL3= degree crank angle offset between crank 1 and crank 3.

In a normal Rhombic drive CR1=CR3, RC1=RC3, EX1=EX3, AL3=0
H= hot cylinder volume

X= (-DEGREE+150)*RA;
H=HPA*(SQR((RC1+CR1)^2-EX1^2)-RC1*SIN(X)-SQR(CR1^2-(EX1-RC1*COS(X))^2))+HD

C= cold cylinder volume  
Y= (-DEGREE+150-AL3)*RA;
C=CPA*(-Math.sqrt((CR3-RC3)^2-EX3^2)-(RC3*SIN(Y)
 -SQR(CR3^2-(EX3-RC3*Math.cos(Y))^2)))+CD+((HAV-H-HD)/HPA)*CPA-OVERLAP

Hot active volume =
HAV=HPA*(SQR((CR1+RC1)^2-EX1^2)-SQR((CR1-RC1)^2-(EX1^2)))

-------------------------------------------------------------------------
Info about the GM GPU-3

http://arrow.dit.ie/cgi/viewcontent.cgi?article=1033&context=engdoc
The Combined Otto and Stirling Cycle Prime-Mover-Based Power Plant
Barry Cullen BE

Page 161, 162
table 6.1 GM GPU-3 engine dimensions 
[98] 
Specifications  
 Value 
        Heater 
 24.53  Mean tube length (cm) 
 15.54  Heat transfer length (cm) 
 11.64  Cylinder tube (cm) 
 12.89  Regenerator tube (cm) 
  0.302 Tube inside diameter (cm) 
  0.483 Tube outside diameter (cm) 
 40 No. tubes per cylinder 
  5 No. tubes per regenerator 

        Cooler 
  4.61  Tube length (cm) 
  3.55  Heat transfer length (cm) 
  0.108 Tube inside diameter (cm) 
  0.159 Tube outside diameter (cm) 
312 No. tubes per cylinder  
 39 No. tubes per regenerator 

       Regenerators 
  2.26 Length (inside) (cm) 
  2.26 Diameter (inside) (cm) 
  8 No. per cylinder 
    Material 
    Stainless steel wire cloth 
    79 x 79 No. wires, per cm 
  0.004 Wire diameter (cm) 
308 No. layers 
 30.3 Filler factor, (%) 
  5 Angle of rotation between adjacent screens (deg) 
  0.8 Mesh porosity 

        Cold End Connecting Ducts 
  1.59  Length (cm) 
  0.597 Duct inside diameter (cm) 
  8 No. ducts per cylinder  
  0.279 Cooler end cap (cm3) 
 
       Drive 
  4.6  Connecting rod length (cm) 
  1.38 Crank radius (cm) 
  2.08 Eccentricity (cm) 
 
        Miscellaneous 
  6.99  Cylinder bore at liner (cm) 
  7.01  Cylinder bore above liner (cm) 
  0.952 Displacer rod diameter (cm) 
  2.22  Piston rod diameter (cm) 
  6.96  Displacer diameter (cm) 
  0.159 Displacer wall thickness (cm) 
  3.12  Displacer stroke (cm) 
  0.163 Expansion space clearance (cm)                             
  0.03  Compression space clearance (cm)                             
521     Buffer space maximum volume (cm3) 
233.5   Total working space minimum volume (cm3)
 
Page 163
Table 6.2 GM GPU-3 engine dead volumes

Specifications—Engine Dead Volume 
Value (cm^3) 

         Heater 
    9.68 Insulated portion of heater tubes next to expansion space 
   47.46 Heated portion of heater tubes 
   13.29 Insulated portion of heater tubes next to regenerator 
    2.74 Additional volume in four heater tubes used for instrumentation 
    7.67 Volume in header 
+ -----
   80.8 Total 

         Cooler
   13.13 Volume in cooler tubes 
 
         Regenerators
    7.36 Entrance volume into regenerator 
   53.4  Volume within matrix and retaining disks 
    2.59 Volume between regenerators and coolers 
    2.18 Volume in snap ring grooves at end of coolers 
+ -----
   65.5 Total 

         Expansion Space Clearance Volume 
    3.34 Displacer clearance (around displacer) 
    7.41 Clearance volume above displacer 
    1.74 Volume from end of heater tubes into cylinder 
+ -----
   12.5 Total 

         Compression Space Clearance Volume
    3.92 Exit volume from cooler 
    2.77 Volume in cooler end caps 
    3.56 Volume in cold end connecting ducts 
    7.29 Power piston clearance (around power piston) 
    1.14 Clearance volume between displacer and power piston 
    2.33 Volume at connections to cooler end caps 
    0.06 Volume in piston “notches” 
    0.11 Volume around rod in bottom of displacer  
   21.18 Total 
+ -----
  193.15 Total dead volume 
   39.18 Minimum live volume 
+ -----
  232.3  Calculated minimum total working space volume 

  233.5  Measured value of minimum total working space volume (by volume 
         displacement) 
    2.5  Change in working space volume due to minor engine modification 
+ -----
  236.0  Total 


Table 6.3 Working fluid properties GM GPU-3
Specifications Value
Gas
Working Gas Helium
System Temperatures
Source temperature       (K) 1100
Hot side gas temperature (K)  922
Sink temperature (K) 286
Cold side gas temperature (K) 286

Ambient temperature       (K) 293
Properties—Helium
Specific heat capacity, constant
volume Cv (J/kgK)            3120
Specific heat capacity, constant
pressure cp (J/kgK)          5197
Specific gas constant, R (J/kgK) 2077
Kinematic viscosity, ? (@600K) (m2/s) 394 x 10-6
Prandtl number, Prhelium 0.676
Conductivity, k (@600K) (W/mK) 252 x 10-3
Conductivity, k (@290K) (W/mK) 149 x 10-3
Dynamic viscosity, µ (@600K) (Ns/m2) 320 x 10-7
Dynamic viscosity, µ (@290K) (Ns/m2) 195 x 10-7
Properties—Air
Specific heat capacity, constant
pressure cp (J/kgK)        1120
Prandtl Number, Prair (1100K) 0.72
Properties – Water
Specific heat capacity, (J/kgK) 4198
Prandtl number, Prwater (286K) 8.8

http://www.erc.uct.ac.za/jesa/volume21/21-2jesa-strauss-dobson.pdf

Page 23 (7 in pdf)
Table 1: Core information of the documented
low power baseline and high power baseline
measurements conducted by Thieme (1979,1981)
                         Low power  High power 
baseline  baseline
Working fluid            Helium     Hydrogen
Heater-tube gas temp.     697 °C      677 °C
Mean compression 
space pressure          4.13 MPa    6.92 MPa
Engine speed           2503 rpm    1504 rpm

Page 24 (8 in pdf)
Table 2: Comparison of the measured and simulated low power baseline measurement 
by Thieme (1979)

                                       Measured results Simulated results with % error
                                                      Urieli method    Alternative method
Exp. space average temperature         851 K                878 K (3.2%)
Comp. space average temperature        371 K                350 K (-5.7%)
Exp. space pressure swing                2.89 MPa           3.16 MPa (9.3%)
Comp. space pressure swing               2.94 MPa           3.01 MPa (2.4%)
Heat input to working fluid per cycle  272 J            313 J             273 J
                                                        (15.1%)           (0.4%)
Heat out of working fluid per cycle    177 J            115 J             165 J
                                                        (-53.9%)          (-6.78%)
Indicated output power and efficiency  3.7 kW @ 0.303   5.61 kW @ 0.43    4.39 kW @ 0.386
                                                        (51.6%)           (18.6%)
Brake output power and efficiency      2.65 kW @ 0.217  4.56 kW @ 0.35    3.34 kW @ 0.294
                                                        (72.1%)           (26.0%)


Page 24 (8 in pdf)
Table 3: Comparison of the measured and simulated high power baseline measurement
by Thieme (1981)

                                      Measured results Simulated results with % error
                                                       Urieli method    Alternative method
Exp.  space average temperature       847 K                  887 K (4.7%)
Comp. space average temperature       345 K                  335 K (-2.9%)
Exp.  space pressure swing              4.23 MPa             4.81 MPa (13.7%)
Comp. space pressure swing              4.43 MPa             4.77 MPa (7.7%)
Heat  input to gas per cycle          444 J            507 J            432 J 
                                                       (14.2%)          (-2.7%)
Heat out of working fluid per cycle   245 J            170 J            248 J 
                                                       (-30.6%)         (1.2%)
Indicated output power and efficiency 4.91 kW @ 0.406  6.29 kW @ 0.494  4.47 kW @ 0.413
(28.1%) (-9.0%)
Brake output power and efficiency     4.16 kW @ 0.344  5.54 kW @ 0.435  3.72 kW @ 0.344
                                                       (33.2%)          (-10.6%)


Page 29 (13 in pdf)

General Motors GPU-3 Stirling engine
General
Configuration Single-cylinder, uniform diameter
bore. Rhombic drive
crank mechanism
Working fluid(s) He, H2 Rated maximum output 8.95 kW with
Hydrogen at 69 bar and 3600 rpm
Bore 69.9 mm
Stroke (piston and displacer) 31.2 mm
Working fluid circuit dimensions
Heater
Mean tube length 245.3 mm
Length exposed to heat source 77.7 mm
Tube length(cylinder side) 116.4 mm
Tube length (regenerator side) 128.9 mm
Tube inside diameter 3.02 mm
Tube outside diameter 4.83 mm
No. complete tubes per cylinder 40
No. of tube per regenerator 5
Cooler
Tube length 46.1 mm
Length exposed to coolant 35.5 mm
Tube inside diameter 1.08 mm
Tube outside diameter 1.59 mm
No. of tubes per cylinder 312
No. of tubes per regenerator 39
Compression-end connecting ducts
Length 15.9 mm
Duct inside diameter 5.97 mm
No. of ducts per cylinder 8
Cooler end cap 279 mm3
Regenerators
Housing inside length 22.6 mm
Housing internal diameter 22.6 mm
No. regenerators per cylinder 8
Mesh material Stainless steel
Mesh no. 7.9 wires/mm
Wire diameter 0.04 mm
No. of layers 308
Porosity 70%
Screen-to-screen rotation 5°
Drive mechanism
Crank eccentricity, r 13.8 mm
Connecting rod length, l 46.0 mm
Désaxé offset, e 20.8 mm
Linear expansion space clearance 1.63 mm
Linear compression space clearance 0.3 mm
Minimum working space volume 232 350 mm3

http://mac6.ma.psu.edu/stirling/drives/beta_rhombic/index.html
rhombic drive